Numerical Solutions of Fractional Integrodifferential Equations of Bratu Type by Using CAS Wavelets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov stability solutions of fractional integrodifferential equations

Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.

متن کامل

Spline-based numerical treatments of Bratu-type equations

Three different spline-based approaches for solving Bratu and Bratu-type equations are presented. The classical cubic spline collocation method, an adaptive spline collocation on nonuniform partitions, and an optimal collocation method are derived for solving Bratu-type equations. Numerical examples are presented to verify the efficiency and accuracy of these methods when compared to other nume...

متن کامل

Existence of Mild Solutions to Fractional Integrodifferential Equations of Neutral Type with Infinite Delay

We study the solvability of the fractional integrodifferential equations of neutral type with infinite delay in a Banach space X. An existence result of mild solutions to such problems is obtained under the conditions in respect of Kuratowski's measure of noncompactness. As an application of the abstract result, we show the existence of solutions for an integrodifferential equation.

متن کامل

Numerical Methods for Solving Linear and Nonlinear Volterra-Fredholm Integral Equations by using CAS Wavelets

In this paper, a new approach to the numerical solution of VolterraFredholm integral equations by using CAS wavelets in combination with the collocation technique is proposed. First, the unknown function is approximated by using CAS wavelets, then the VolterraFredholm integral equation is reduced to the linear or nonlinear system of equations. Moreover, the convergence theorem for the proposed ...

متن کامل

New perturbation-iteration solutions for Bratu-type equations

Perturbation–iteration theory is systematically generated for both linear and nonlinear second-order differential equations and applied to Bratu-type equations. Different perturbation–iteration algorithms depending upon the number of Taylor expansion terms are proposed. Using the iteration formulas derived using different perturbation–iteration algorithms, new solutions of Bratu-type equations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2013

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2013/801395